Nutan Urja Solutions

A 703, Balaji Witefield, Near Sunni's World,

Sus Road, Sus, Pune 411 021

Phone: 83568 18381. Email: nutanurja.solutions@gmail.com

Date: 21/08/2019

CERTIFICATE

This is to certify that we have conducted Energy Audit at Brahma Valley College Of Engineering And Research Institute, Nashik as per the guidelines of Maharashtra Energy Development Agency (www.mahaurja.com) in the year 2018-19.

The College has already adopted Energy Efficient practices like:

- Usage of Energy Efficient LED Fittings
- Usage of Energy Efficient BEE STAR Rated equipment
- > Installation of Solar Thermal Hot Water System
- ➤ Installation of Solar PV street lights

We appreciate the support of Management, involvement of faculty members and students in the process of Energy Conservation & making the campus Green.

Nutan Urja Solutions,

K G Bhatwadekar,

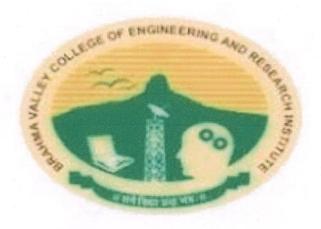
18. Bhatulaka

Certified Energy Auditor,

EA - 22428

Report

On


Energy Audit

At

Brahma Valley College Of Engineering And Research Institute,

Nashik

(Year 2018-19)

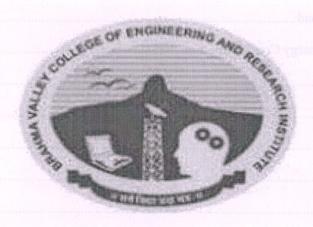
Prepared by

Nutan Urja Solutions

A 703, Balaji Witefield, Near Sunni's World, Sus Road, Sus, Pune 411 021

Phone: 83568 18381. Email: nutanurja.solutions@gmail.com

Report


On

Energy Audit

At

Brahma Valley College Of Engineering And Research Institute, Nashik

(Year 2018-19)

Prepared by

Nutan Urja Solutions

A 703, Balaji Witefield, Near Sunni's World, Sus Road, Sus, Pune 411 021

Phone: 83568 18381. Email: <u>nutanurja.solutions@gmail.com</u>

Acknowledgement

We at Nutan Urja Solutions, Pune, express our sincere gratitude to the management of Brahma Valley College Of Engineering And Research Institute, Nashik for awarding us the assignment of Energy Audit of their college premises.

We are also thankful to various Head of Departments & other Staff members for helping us during the field measurements.

We hope that the recommendations stated in this report will be useful and worthy of discussions to take things forward to help implementation of energy conservation measures through energy savings. While we have made every attempt to adhere to high quality standards, in both data collection and analysis through the report, we would welcome your suggestions so as to improve upon this report further.

5. Recommendations

Table no 1: Recommendations for energy savings

No	Recommendation	Annual Saving potential, kWh/Annum	Annual Monetary Gain, Rs.	Investment Required, Rs.	Payback period,
1	Replacement of 215 Nos T-8 fittings with 20W LED fittings	4,300	47,300	137,815	35
2	Replacement of 181 Nos Old Ceiling Fans with STAR rating fans	2,353	25,883	393,494	182
3	Installation of 100kW grid connected PV panel	150,000	1,650,000	5,000,000	36
	Total	156,653	1,723,183	5,531,309	39

6. Notes & Assumptions

- 1. Daily working hours-10 Nos
- 2. Annual working Days-300 Nos
- 3. Average Rate of Electrical Energy: Rs 11/- per kWh

1. Introduction

Brahma Valley Educational Campus is located in the outskirts of Anjaneri, (Trimbakeshwar High-Way Nashik) comprising a sprawling campus of about 35 acres land. The campus is situated in the valley surrounded by hills & reflects the beauty of nature. This place is also known as the birth place of Lord Hanuman and is close to Trimbakeshwar Temple which is one of the 12 Jyotirlingas of Lord Shiva which adds to the holiness and beauty of this area.

1.1 Objectives

- 1. To study present level of Energy Consumption
- 2. To Study Electrical Consumption
- 3. To assess the various equipment/facilities from Energy efficiency aspect
- 4. To study various measures to reduce the Energy Consumption

1.2 Audit Methodology:

- 1. Study of connected load
- 2. Study of various Electrical parameters
- 3. To prepare the Report with various Encon measures with payback analysis

1.3 General Details of College

Table No-1.1: Details of college

No	Head	Particulars Apold phot Apple
1	Name of Institution	Brahma Valley College Of Engineering And Research Institute, Nashik
2		Brahma Valley College Of Engineering And Research
	Address	Institute, Anjaneri, Trimbak Road, Nashik, Maharashtra 422 213.
3	Affiliation	Savitribai Phule Pune University

A001	Faculty Room	1			OD MBA	1 11
A002	Faculty Room	2			11del u	1 11
A003	HOD Mechanical Engg.		1		II 1 day o	2
A004	Board Room	2		3	lass Koom M	3
A005	RAC Lab.	6		II-AE	iass Room M	4
A006	Class Room- B.E. Mech -A	6		y Lab.	ngg. Chemist	4
A007	Thermodynamics Lab.	9		9009	OD angg. Sc	6
A009	Metallurgy Lab.	6		.08	ngg.Pijysics L	2
A010	Turbo Machines Lab.	4			moly kin	2 *
A012	Fluid Mechanics Lab.	8	5	A- 3	lass Room F.	4
A013	BME Lab.	5		21-10	2	3
A014	MQC Lab.	8	. 1	tingg.	OD biccinoa	4
A103	Heat Transfer Lab.	8			MI Lab.	4
A104	Dynamics of Machinery Lab.	10			ower System	1 018
A104	Theory of Machines Lab.	10		ics Lab.	2	4
A105	Fluid Power Lab.	8		.68.1	ontrol System	1 1018
A105	Mechatronics Lab.	8	5	unes Lab.	ioctrical Maci	3
A207	Tutorial Room			8	igh voltage	F 7119
A207	Class Room B.E. MechB		-	8	omputer Lab.	5 FIIR
A209	Class Room S.E. MechA			8	iass koom 5.) 607FF
A210	Class Room S.E. MechB			4	iass Room 1.) 0179
A211	Class Room T.E. MechA			4	Eass Koopt B.	7 1178
A212	Class Room T.E. MechB			4	nd IIVIO (10)	1 TOWN
B207	Drawing Hall-I			4	nvironmentai	F .7009
B208	Drawing Hall-II			4	trength of Ma	\$ NOOR
101A	Project Lab.			lology Lab.	onerete Lechi	€008
101B	Programming LabII				urvey Lab.	S austi
106	Computer Center		2	29	60	7
A106	Programming LabI	8		ngg, Lab.	16	3
A107	Hardware Lab.	6		bngg Lab.	ransportation	3
A108	HOD Computer Engg.	2		.da.1 20	ngg. hicknan	1
A109	Software LabI	4		Leb.	10	2
A110	Software LabII			E. CIVIL	jass Koom 5.	7 +60791
A111	Database Lab.	2		1171-7-21	18	1/28
A204	Class Room S.E. Comp.		8	E. CIVIL	lass koom b.	3
A205	Class Room T.E. Comp.		4	(10017-0)	mouch agrees	1
A206	Class Room B.E. Comp.		4	13001	16114) 95 1860	
A208	Tutorial Room			. (300FL)	MOD'S SPRING	A.
B008	Language Lab.			(1001)	assauc (Fust	I A

Report on Energy Audit: Brahma Valley College Of Engineering And Research Institute, Nashik

A	Passage (Second Floor)	nollq	Consum	10	d Electrical	3. Study o
В	Passage (Ground Floor)	8	3			
В	Passage (First Floor)	3	7	Samuel marger	Jazgana sus	0.19
В	Passage (Second Floor)	f Enginer	ollege O	16	n. The Brahm	oliqmuznot
rof reter	Total	215	140	292	260	181

Apart from above load, the college has pumps, street lights. Individual fitting wise load is as under.

Table No 2.2: Equipment wise Connected Load

No	Equipment	Qty	Load, W/Unit	Load, kW
1	F T L-40 W	215	40	8.6
2	LED Tube-20W	140	20	2.8
3	LED bulb	292	12	3.5
4	Computers	260	65	16.9
5	Ceiling Fan	181	65	11.8
6	LED focus Street light	20	35	0.7
8	Pumps (5HP)			3.7
	Total	PI-JUKI		16.2

Data can be represented in terms of PIE chart as under,

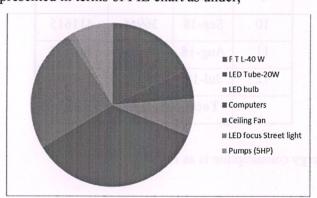


Figure 2.1: Distribution of connected load.

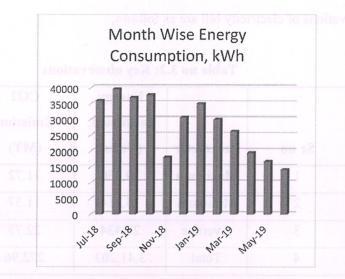


Figure 3.1: Month wise energy consumption

Monthly variation in electricity bill is as follows,

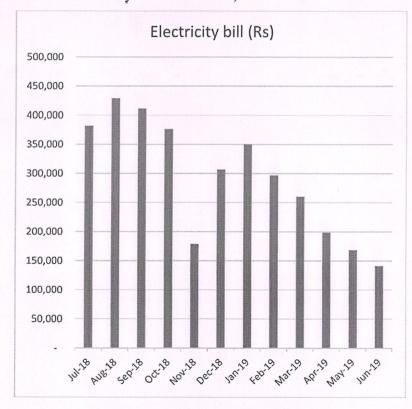


Figure 3.2: Month wise electricity bill

4. Carbon Foot printing

1. A Carbon Foot print is defined as the Total Greenhouse Gas emissions (CO₂ emissions), emitted due to various activities. In this we compute the emissions of Carbon-Di-Oxide, by usage of the various form of Electrical Energy used by the College for performing its day to day activities

2. Basis for computation of CO2 Emissions:

The basis of Calculation for CO₂ emissions due to Electrical Energy is as under

➤ 1 Unit (kWh) of Electrical Energy releases 0.8 Kg of CO₂ into atmosphere.

Based on the above Data we compute the CO₂ emissions which are being released in to the atmosphere by the College due to its Day to Day operations

The Brahma Valley College Of Engineering And Research Institute, Nashik is situated in Brahma Valley Educational Campus. Entire Campus is having single energy meter for all institutes situated in campus. CO₂ emissions due to Electrical Energy is calculated for entire campus.

We herewith furnish the details of various forms of Energy consumption as under

5. Study of utilities

5.1 Study of Lighting

In the facility, the lighting system can be divided mainly in to parts, indoor lighting and outdoor lighting. There are 215 FTL fittings with Electronic/ magnetic chokes, 292 nos of LED tubes, 140 nos of LED bulbs. It is recommended to install the 20 W LED Tube light fittings in place of these old T-8 fittings. There are 30 No of LED street lights.

5.2 Ceiling Fans

At building facility, there are about 181 Nos Old Ceiling Fans, which consumed about 65 W of Electrical Energy. It is recommended to replace these old Fans with BEE STAR Rated Ceiling Fans.

5.3 Water Pumps

There are in total 1 Water pumps with 5HP.

7. Study of usage of LED lighting

In this chapter we study the lighting system of college and compute the percentage of total load catered by LED lighting.

Table 7.1: Total lighting load

No	Particulars	Qty	Load, W/Unit	Load,
100	FT L-40 W	215	40	8.6
2	LED lighting load	-Tfo	resent Qu	
1 111	LED tube	140	20	2.8
2	LED bulbs	292	12	3.5
3	LED street lights	20	35	0.7
yeG\s	Total LED lighting loadl	giy Çiy	g sgmav/	7.0
/h/Day	Total Lighting load	H m 2	avas yliaC	15.6

It can be seen that out of total lighting load 45% load is LED lighting load.

8.2 Replacement of old fans with STAR Rated fans

During the Audit, it was observed that there are 181 no of fans. It is recommended to replace these old fans with STAR Rated fans.

In the following Table, we present the savings, investment required & payback analysis.

No	Particulars	Value	Unit
1	Present Qty of Old Ceiling Fan fittings	181	Nos
estatu	Energy Demand of Old Ceiling Fan	REPORTED	BIHERY P
2	fitting	65	W/Unit
3	Energy Demand of STAR Rated Fan	52	W/Unit
4	Reduction in demad	13	W/Unit
5	Average Daily Usage period	4	Hrs/Day
6	Daily saving in Energy	9.412	kWh/Day
7	Annual Working Days	250	Nos
8	Annual Energy Saving possible	2353	kWh/Annum
9	Rate of Electrical Energy	11	Rs/kWh
10	Annual Monetary saving	25883	Rs/Annum
11	Cost of STAR Rated Ceiling Fan	2174	Rs/unit
			Rs lump
12	Investment required	393494	sum
13	Simple Payback period	182	Months

8.4 Summary of Savings

No	Recommendation	Annual Saving potential, kWh/Annum	Annual Monetary Gain, Rs.	Investment Required, Rs.	Payback period, Months
1	Replacement of 215 Nos T-8 fittings with 20W LED fittings	4,300	47,300	137,815	35
2	Replacement of 181 Nos Old Ceiling Fans with STAR rating fans	2,353	25,883	393,494	182
3	Installation of 100kW grid connected PV panel	150,000	1,650,000	5,000,000	36
	Total	156,653	1,723,183	5,531,309	39

